Grant Number NAG8-093

Efficient Parallel Architecture for
Highly Coupled Real-Time Linear System Applications

by

Chester C. Carroll
Cudworth Professor of Computer Architecture

Abdollah Homaifar
Temporary Visiting Assistant Professor
of Electrical Engineering

and

Soumavo Barua
Graduate Research Assistant

Prepared for

The National Aeronautics and Space Administration

Bureau of Engineering Research
The University of Alabama
January 1988

BER Report No. 419-17

ACKNOWLEDGEMENT

This research was supported by NASA, George C. Marshall Space
Flight Center, Huntsville, Alabama, under Grant Number NAG8-093 and
conducted in the Computer Architecture Research Laboratory in the
College of Engineering at The University of Alabama.

ii

LIST OF ABBREVIATIONS

ABPC Adams Bashforth Predictor Corrector
GaAs Gallium Arsenide
PE Processing Element
PIA Parallel Integration Algorithm
RISC Reduced Instruction Set Computer
TUS Time Units
WSI Wafer Scale Integration
FAST Flexible Architecture Simulation Task
REMPS Reconfigurable Multiprocessor for Scientific
Supercomputing
XPn Predicted value of variable X at the nth
computing interval
XCn Corrected value of variable X at the nth
computing interval
X state variable
R Control Weighting Matrix
Q State Weighting Matrix
H Terminal State Weighting Matrix

iii

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS .vveeeceecvcssssscnosnsassasonanaans oo dd
LIST OF ABBREVIATIONS «..evuvvnvrnccnrcncsonns ceeeees i1
LIST OF TABLES cececenrenenes cetscssesssseesses Vi
LIST OF FIGURES ...vcceeeennnveccnnonccconnns ceenns eeo vii
ABSTRACT cecsessastaseseens ceceesstscesesense ees viii
CHAPTER 1: INTRODUCTION Ceeeesseacenenassaann 1
1.1 Backgroundccviietieeenceononscen 1
1.2 Objective tasesrassasenn cesasessanans 1
1.3 Research phases ceeeseaen creean 2
CHAPTER 2: APPLICATION AND MODEL DEVELOPMENT 5
2.1 Problem Identification 5
2.2 Solution Methods tecctrosasene 6
2.3 Parallel Integration Algorithms 8
2.4 The Prototype Problemceven 10
CHAPTER 3: PARALLEL IMPLEMENTATIONvcevevneeees 13
3.1 Task Graph Attributes ceens 13
3.2 Task Graph Developmentcceceeveee 16
3.3 Task Matrixccceeeeeeeeecenns ceees 22
3.4 Scheduling Problemcccveeeeen 24
3.5 Scheduling Classification 24
3.6 Approaches in Scheduling 25

3.7 Assumptions in the Scheduling
Algorithmvcvevneen ceeeenoas 27
3.8 Scheduling Algorithm 28

CHAPTER 4: SIMULATION AND PERFORMANCE EVALUATION 33

4.1 Performance Evaluation Criterion 33
4.2 Assumptions in Simulation 34
4.3 Results of Simulation ...ccevevceoncns 35

CHAPTER 5: ARCHITECTURE AND HARDWARE DESIGNS 40

5.1 Architectural Requirements 40
5.2 PE System Designcciievenienennnn 41
5.3 Technology Selectionccceceecn.. 41
5.4 Interconnection and System Layout cee 43
5.5 Future Directionsccccevuvveene 45

iv

REFERENCES

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

SOLUTION OF OPTIMAL CONTROL LAW USING

MATRIX RICATTI EQUATIONS crecnes 48
TASK GRAPH ATTRIBUTES FOR HIGHLY-COUPLED

LINEAR SYSTEM EQUATIONS ...cceccevccccccn 52
FLOWCHART FOR SCHEDULING ALGORITHM 69

SCHEDULER ROUTINE IN PASCALcc... 76

LIST OF TABLES

Node Description for Task Graph ..
Task Matrix for Task Graph
Scheduling Techniques cresensensas
Task Graph and Task Matrix creeeea
Elementary Operation on Task Matrix
Elementary Operation on Task Matrix
Elementary Operation on Task Matrix

Elementary Operation on Task Matrix

vi

DI IR A Y SRS R SO Y

Page
21
23
26
29
30
30
32
32

1.1
2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
4.1
4.2
4.3
5.1

5.2

LIST OF FIGURES

Overview of Research Projectccceieeecececes
Overall Problem Representationccececascsaces
Serial Computation Sequencecccceeveeesaces .
Parallel Computation Sequence e ececssacnans

Reverse Parallel Computation Sequence

Example of a Task Graph N ceeeesane
Task Graph Development Cesevecnssenoen
Function Task Block ceceenensssnees

Task Graph for a Single System Equation teecanen

Processor Execution Time Ceresecassennns
Processor Efficiency cecenenes ceeetenes
Processor Speed Upciveevennnnns cesesennns .
PE Design Schemata S eessessesaaasaseenasseeanans
System Architecture Layout csesanne cesesieneanes

vii

Page

11
11
14
17
18
20
36
37
39
42

44

ABSTRACT

A systematic procedure has been developed for exploiting
the parallel constructs of computation in a highly coupled,
linear system application. An overall top down design approach
is adopted.

Differential equations governing the application under
consideration are partitioned into subtasks on the basis of a
data flow analysis. The interconnected task units constitute a
task graph which has to be computed in every update interval.
Multiprocessing concepts utilizing parallel integration
algorithms are then applied for efficient task graph execution.
A simple scheduling routine has been developed to handle task
allocation while in the multiprocessor mode.

Results of simulation and scheduling are compared on the
basis of standard performance indices. Processor timing diagrams
have been developed on the basis of program output accruing to
an optimal set of processors.

Basic architectural attributes for implementing the system
is discussed together with suggestions for processing element
design. Emphasis has been placed on flexible architectures that
are capable of accommodating widely varying application

specifics.

viii

CHAPTER 1

INTRODUCTION

1.1 Background:

Real-time application algorithms are characterized by complex
and time consuming computations suitable for processing in large
mainframes and associated machines. However cost and space
constraints would favor the development of small multiprocessor
machines that are capable of exploiting the inherent parallel
constructs of computation [1]. With decreasing hardware costs a
large number of érocessors may be grouped together to form
specialized processing clusters or modules [2]. Flexible
customization methodology may serve to utilize these specialized
hardware modules to achieve computational speeds that are beyond
the limits of uniprocessor sequential methods. The vast increase
in computing power accompanied by the drastic reduction in cost,
makes parallel processing in multiprocessor environment a
viable option for the critical timing constraints of real-time

applications.

1.2 Objective:
The objective of this research is to develop a systematic

procedure for evolving a computational model that is

particularly amenable for parallel processing in a
multiprocessor environment. An overall top-down approach (see
Figure 1.1) is adopted. Any real-time system may be represented
in general by a set of differential equations which govern the
dynamic behavior of the system. As a specific example, a
prototype real-time control problem is modeled as a set of
differential equations. These are mapped onto a task graph which
is then allocated to a set of processors in accordance with an
allocation algorithm. This is followed by a verification and
comparison stage wherein the results of such a mapping are
compared with that of traditional uniprocessor methods in terms
of speed up fatio, efficiency and average processor utilization.
Finally, hardware schemata are included for processors and their

design.

1.3 Research Phases:
Research was conducted in the following phases:
1) Problem Identification
2) Task Graph Development
3) Scheduling and Simulation
4) Hardware and software issues
A few simplistic assumptions were made throughout the
overall research. Interprocessor communication time was
neglected in all cases. Although the author acknowledges that
this is not a very practical assumption, the overall performance
improvement would not be greatly undermined even if such delays

are taken into account. Finally , an inexhaustible supply of

APPLICATION > REAL TIME TRACKING PROBLEM

N

TASK GRAPH

<

LY

SCHEDULING AND ALLOCATION

N\

N\

.}

SOFTWARE ISSUES

R\

HARDWARE STRUCTURES

Figure 1.1 Overview of Research Project

hardware resources has been assumed. The number of available
processors has been treated as a variable parameter which may be
optimized to obtain maximum speed of execution. It is this
singular fact that makes a flexible architecture the best

hardware support for this project.

CHAPTER 2

APPLICATION AND MODEL DEVELOPMENT

A vast majority of real time control problems can be
represented by a stochastic system of equations and an
associated cost function or performance index. The dynamic
behavior of the system is modeled by a set of linear state

equations of the form:
x(t)=A(t)x(t)+B(t)u(t)

The major objective in such a system model is to obtain the

optimal control law by minimizing the overall cost function [3].

2.1 Problem Identification

A typical class of optimal control problems are of the
tracking type. These are primarily concerned with constraining
the motion of a body in a defined trajectory and are widely used
in attitude control of rocket, missile guidance, aircraft
landing analysis etc. The cost function to be minimized for

optimal control is commonly represented as:

tf T
{[x(t)-r(t)]

(o]

Q(t) [x(t)-r(t) J4+uT(t)R(t)u(t)}dt

J=0.5[x(tf)-r(tf)]T H[x(tf)-r(tf)]+0.5J
t

Modern control theory suggests two principle ways of
solving such problems (Appendix A). One convenient technique is
the generation of a set of first order differential equations
known as the Matrix Ricatti Differential Equations (see Figure

2.1) having a form :
K=-K(t)A(t)-AT(£)K(£)-Q(t)+K(t)B(t)R1(t)BT(t)K(t)
s(t)=-[AT(£)-K(t)B(t)R"1(t)BT(t)]s(t)+Q(t)r(t)

It may be easily proved that if K is a '"n by n" symmetric matrix
and s is a '"n by 1" vector , then the above matrix equations
reduce to a set of "n(n+l)/24n" first order differential
equatioﬁs which have to be solved in real time.With large values
of "n" as is true for most practical systems , an inconveniently
large set of equations is obtained. Even with available current
technology, it requires a mini supercomputer to perform the

necessary computat ions.

2.2 Solution Methods

Several standard software routines using Runge Kufta
Method, Adams Bashforth Method is available for solving
differential equations and may be applied to the solution of
Matrix Ricatti Equation. However, these ;re sequential
techniques with a set limitation on execution speed. By
employing parallel integration algorithms (PIA) it is possible
to obtain a greater throughput while maintaining the same level
of accuracy [4]. The method presented here is a modified version

of that proposed by Willard L. Miranker and Werner Liniger [5].

|
’ .
i STOCHASTIC SYSTEM EQUATIONS
! &
COST FUNCTION

| ALGEBRAIC MANIPULATIONS x=Ax+Bu
| RELEVANT TO OPTIMAL CONTROL 3= 0.5(x(t)-r(t)) Hx(t)-r(t)
t 4 + 7

THEORY .
0.5 | (((x(t)-r(t)) Q(t)((x(t)-r(t))
R=CONTROL WEIGHTING MATRIX ko +
Q=STATE WEIGHTING MATRIX u ()R(t)u(t))dt
H=TERMINAL STATE WEIGHTING
MATRIX

MATRIX RICATTI DIFFERENTIAL

EQUATION
K IS SYMMETRIC MATRIX K=-KA-A'K-Q+ KBR'B'K
s IS AN BY 1 VECTOR)
A SET OF N(N+1)/2+N FIRST s=-(AT-KBR'BNs + QR

ORDER DIFFERENTIAL EQUATIONS
HAVE TO BE SOLVED

s

SOLVE FOR K,s MATRICES USING
INITIAL CONDITIONS

OPTIMAL CONTROL LAW AS A
FUNCTION OF
K,S AND X

SUBSTITUTION

OPTIMAL SYSTEM STATES

FIGURE 2.1 Overall Problem Representation

A modification is necessary as the aforementioned authors
developed their algorithm for standard differential equations
which are typically initial value problems as opposed to the
Matrix Ricatti Equations where the integration has to be carried

out backwards in time.

2.3 Parallel Integration Algorithm
A widely used technique for solving differential
equations is the Adam Bashforth Predictor Corrector (ABPC)

method. For a general problem of the type
y'=f(x,y), x> 0, 4y(0)= yos
the differential equations for a two step ABPC method are given
Yon = Y1 + W2 [3£, - -2 |
Y% = %1 + W2 [an + %1 1.

where h = step increment = x, / (n-1);

It is apparent that the predicted value at the (n)th step
is used in the next step to compute the corrected value at the
(n)th step. The sequence of computation is schematized (see
Figure 2.2). The "P" and "C" lines denote the predicted and
corrected values of the function. A hypothetical computation
front is indicated by means of a dotted line. The directed line
segments display that at the (n)tP mesh point , results flow in
from both sides of the computation front thereby precluding any

chances of simultaneous prediction and correction.

)

CE N B R e Gl L L X T Pty

3
|
N
o
|
[
3

Figure 2.2 Serial Computation Sequence

10

A suitable modification converts this sequential technique

into an effective PIA. The modified equations are:
yPn =¥-2+2h an—l
Y%-1 = ¥%-1 + B2 [an-l + %2 1

The computation front and associated sequence of
computation are shown (see Figure 2.3). The arrows indicate that
calculation at any step depends only on information at previous
mesh points. This implies that the parallel implementation
simultaneously accommodates prediction at the (n)th step and
correction at the (n-1)th mesh point and thus may be executed in
parallel on two arithmetic processors.

Application of this technique to the solution of Matrix
Ricatti equations necessitates the computation front to proceed
backward in time. For this purpose the aforementioned parallel

differential equations are modified to yield :
yPn-Z =55 -2h an-l
Yn-1 = ¥ - W2 [£, + £%,]

The corresponding computation front has also been shown (see

Figure 2.4).

2.4 The Prototype Problem
A prototype reflects an actual problem area with all its
attributes but in smaller dimensions. It provides the researcher

with a congenial environment to experiment novel schemes. In

11

Figure 2.3 Parallel Computation Seguence

Figure 2.4 Reverse Parallel Computation Sequence

| this thesis, a prototype tracking problem has been considered so
as to illustrate the basic concepts and ideas that were

developed in course of research.

The system to be controlled is assumed to be represented by

two state equations:
il(t) = XZ(t)
xp(t) = 2x;(t) - x5(t) + u(t)
The performance index to be minimized is
o

T
J(u) = J{[xl(t) - 0.2t]2 + 0.025u%(t)}at

In this problem the major objective is to maintain the
state x; close to the ramp function rj(t) = 0.2t. The Matrix

Ricatti equations for such a system are :
K11(t) = 20 k1o2(t) - 4 kpp(t) - 2
Kyo(t) = 20 kyp(t)koo(t) - kyj(t) + kjp(t) - 2 kyp(t)
kyo(t) = 20 kyp2(t) - 2 kjp(t) + 2 kop(t)
s1(t) = 2 [10 kyo(t) - 1 1 sp(t) + 0.4t
so(t) = -s7(t) + [20 kpp(t) + 1] sp(t)

All the equations in the above set are cross coupled.
However, the computational parallelism inherent in the equations
may be exploited to obtain a higher throughput. This is

discussed in the next chapter.

12

CHAPTER 3
PARALLEL IMPLEMENTATION

One of the important potentials of multiprocessor systems
is the ability to speed up computation by concurrently
processing independent portions of a given assignment [1, 11].
Extensive research is being carried out to develop mathematical
models that can be solved efficiently on parallel processors
[6]. The first step in developing such multiprocessor models is
to identify the parallelism within the mathematical formulation
of the problem. This necessitates a data flow analysis of the
problem with a subsequent evolution of a " task graph ". This is
then allocated to a set of processors by means of a scheduling

algorithm so as to obtain minimum achievable execution time.

3.1 Task Graph Attributes

A task graph represents a set of '"jobs'" or '"computation
units" arranged in accordance with certain precedence
constraints. Such a set is generally described by a "finite
directed acyclic graph" [7] and is assumed to have single entry
and terminal nodes through which all other nodes may be
accessed. Task execution times are represented by node weights
[8]. An example of a task graph is shown (see Figure 3.1).

In most practical problems, the mathematical nature of the

model yields a set of closely coupled equations as is also true

13

Figure 3.1 Example of a Task Graph

15

for the prototype problem under consideration. Hence it becomes
a difficult task to identify not only the areas of mathematical
parallelism [6] but also integrate these with solution
techniques (like ABPC) under consideration.

A few important notions must be explicitly stated before
any attempt is made to outline a systematic procedure for task
graph development.

A "data flow graph" is very similar to a task graph except
that the latter precludes all logical constructs of an incumbent
program. In its simplest form, a task graph reflects an attempt
to partition computation tasks in an optimum manner without any
reference to logic statements which may have a representation in
an equivalent data flow graph.

Being very closely related to the mathematical model of the
system, a task graph is unique and specific to a particular
applfcation. The same system under different functional
operations may require an entirely different task layout.

Even by partitioning the system model into several
independent paths which may be computed in parallel, there
exists a '"critical path" which presents a set "lower limit" on
the minimum achievable execution time. No amount of task
decentralization in the form of a well balanced task graph or
processor computing power can overcome the timing constraints
set by the critical path. It is imperative that the update
interval of data is greater than or atmost equal to the

calculation time of the critical path.

16

3.2 Task Graph Development

A top-down design strategy is adopted in task graph
development (see Figure 3.2). The system differential equations
are partitioned and combined with standard integration
techniques (ABPC in this case) to yield a set of difference
equations. Subsequently, a data flow analysis is made wherein
each difference equation is further broken up into simpler
computation units in consonance with the mathematical attributes
of the system. This procedure of task fragmentation is
repeatedly continued till elementary computer operations
(addition, subtraction, multiplication and division) or basic
task units result. These are all interconnected and yield a
complex mesh which is collectively called the '"task graph" for
the application under consideration. An attempt is made to keep
the overall task graph reasonably balanced so as to preclude
possibilities of unduly long critical paths.

To illustrate the above concepts, let us consider one of
the differential equations having a high degree of cross

coupling:

kiz(t) = 20 klz(t) kzz(t) - kll(t) + klz(t) -2 kzz(t)

The first step is to make a d;ta flow analysis for the equation
above. This is done by constructing a function task block "f;,"
(see figure 3.3). The nodes in the first level are either data
constants or values of "kj;" and "k;," at the previous update
interval. The subsequent levels keep a numerical count of the

elementary operations involved with "1*'" within a node

TASK GRAPH DEVELOPMENT

DESIGN STRATEGY: TOP - DOWN APPROACH.

SYSTEM DIFFERENTIAL
EQUATIONS

STANDARD TECHNIQUE
OF NUMERICAL INTEGRATION

\@/

v

DIFFERENCE EQUATIONS

:

FRAGMENTATION OF
COMPUTATION STEPS

.

OPERATIONS

MESH OF ELEMENTARY

(+.-)
!

TASK GRAPH

l

TASK MATRIX

I

ALGORITHM

INPUT TO ALLOCATION

Figure 3.2 Task Graph Development

17

18

GE IS
ORIGIMAL PAG
OF PCOR QUALITY

Figure 3.3 Function task block

19

indicating one multiplication. Similarly, 1+,2- indicates a
total of three operations comprising of one addition and two
subtractions. Task time is counted on the basis of "time units"
or TUs. Multiplication and division are assigned a weightage of
3 TUs compared to addition and subtraction which take 2 TUs. The
function task block has a total count of 6 operations equaling
at least 15 TUs.

The given equation along with the function task block must
be integrated with the ABPC method. The difference equation to

be solved becomes:

C(kyp)0 = (k92)%, - -2 h £(kg5)P

(k12 %1 = (kpp)% - b/2 [£(Ky Mg + £C k13)%,]

Again on the basis of data flow, a track of the flow of
computation is maintained and the resulting interconnected mesh
of simple operations obtained constitutes the task graph for the
equation in question (see figure 3.4). An interesting feature of
this task graph is that it is non terminating in nature. Apart
from the data constanté, the parameter values are updated in
every sampling interval. The systematic node description for the
task graph under consideration is shown in Table 1. Each
differential equation of the original set is thus fragmented to
yield a sub task graph which are then interlinked to yield the
overall task graph for the system. This has been shown in

Appendix B.

20

. TAC

=)
<
vl
Fa]

DRIGI

4 7 Tevier

BE BOOK i st

uotyenbyg wa3sds o7buls e I03 ydean 3sey,

o

)

s

b€ sanbry

(9

TABLE 1

NODE DESCRIPTION FOR TASK GRAPH IN FIGURE 3.4

Node No.

Parameter Operation
c -
| 2 h=constant LiOP
3 2=data constant NOP
P
3 (k11) "n-1 Load
6 (ky5) 1 Load
7 20=data constant NOP
: c
f 8 f(klz) n Load
9 -—- /
10 . - *
P
11 f(klz) n-1 Load
12 ——— +
™3 ——— *
14 —— * .
15 —— -
16 —— -
P
17 12) n-2 Load ,

22

3.3 Task Matrix

A task graph for a practical problem is quite imposing in
its complexity. A "Task Matrix'" offers a convenient and concise
technique for representing a task graph and at the same time
maintains all precedence constraints. For a faithful
representation, a task matrix should have the following fields:

1) Task Field (T): It indicates the task number.

2) Task Enable Field (E): It can assume only two
values - a "HI" indicated by binary "1'" and a "LO" indicated by
a binary "0". Whenever E=1, the corresponding task is enabled.

3) Pending Task Queue Field (Q): It represents the
number of tasks pending at each node. It provides a count of the
immediate predecessor tasks that have to be executed prior to
self execution. A task unit at a particular level in the task
graph may be enabled only if the corresponding value of Q = 0.

4) Successor Field (S): This is in array field
which keeps track of the number of immediate successor tasks at
each node.

5) Weight Field (W): It shows the time taken for a
task defined by the node under consideration to execute. The
weight field is assigned arbitrarily as the speed of execution
tends to vary with hardware features of the selected processor.
However reasonable assumptions are made while assigning weights,
e.g., task unit defining multiplication must have a larger
execution tiﬁe compared that which defines addition.

The task matrix table for the task graph in Figure 3.1 is

shown (see Table 2). The tasks are numbered from "1" to "8" with

TABLE 2

TASK MATRIX FOR TASK GRAPH IN FIGURE 3.1

T E Q s w
1 1 0 4 X
2 1 o 4 X
3 1 0 5,6 X
4 0 2 7 X
5 0 1 8 X
6 0 1 . X
7 0 1 . X
8 0 1 . X

TASK NUMBER FIELD.

TASK ENABLE FIELD.
PENDING TASK QUEUE FIELD.
SUCCESSOR TASK FIELD.
WEIGHT FIELD.

DON’T CARE.

Xgnwom-

23

24

weights being "don't care" denoted by "X". "0" represents the
input node whereas "*'" denotes the terminal node. During start
of execution any one of the tasks 1,2 and 3 may be executed and
this is indicated by E = 1 and Q = 0 in corresponding fields.
Task 4 has Q = 2 because it has two immediate pending or
predecessor tasks in tasks 1 and 2. Tasks 5 and 6 are the
successors of task 3 as shown in the S field. Tasks 6,7 and 8

terminate in the output node indicated by "*".

3.4 Scheduling Problem

The scheduling problem primarily deals with resource
optimization. Stated simply it reduces to " Given a set of tasks
or computations along with a set of operational precedence
relationships that exist between a certain of these tasks, and
given a set of k' identical processors, ﬁow does one sequence
or schedule these tasks on the k' processors so that they
execute in minimum time?" [8]. By definition a scheduler' is an

algorithm that uniquely specifies which job unit is to be

serviced next by a resource [10] and to this end, an efficient
scheduling algorithm need be developed which undertakes
efficient task allocation and sequencing. Problems of this type
are commonly referred to as "minimum execution time

multiprocessor scheduling problem" [7].

3.5 Scheduling Classification
Task scheduling by itself forms an interesting area of
research and draws heavily on concepts of graph theory and

operations research. A number of scheduling strategies are in

25

vogue (see Table 3), each being suitable for a specific
application. The major class of schedulers are categorized as
pre-emptive or non pre-emptive.

A pre-emptive scheduler is capable of selecting and
assigning a job to a server at any time irrespective of job
completion, that is, a pre-emptive scheduler assumes that jobs
are interruptible and will do so if another job of higher
priority needs service. The overall flexibility of the schedule
increases due to pre-emption but at the cost of hardware
overhead and job "set-up" time. On the contrary, a non pre-
emptive scheduler allows no job-switching, that is, once a job
is assigned to a resource it has to be executed before another
job can be accoﬁmodated even though it may have a higher

priority.

3.6 Approaches to the Scheduling Algorithm
The scheduling problem may be approached from two different

angles.

(1) Given a task graph and a set of k' processors, a
task assignment routine has to be developed that yields a
description of the tasks done by each processor as a function of
time. It ensures an optimum processor packing of task units so
as to yield maximum resource utilization and at the same time
attain a maximum speed of execution.

(2) Given a task graph, the scheduler keeps the
option of available hardware open and selects an optimum number

of processors for executing the task graph in minimum time. The

26

TABLE 3

SCHEDULING TECHNIQUES

Scheduler Name Type of Operation
FCFS First-come-first-served
SXFS Shortest-job-first
LCFS Least-completed-first
EDFS Earliest-due-time-first
HSFS Highest-static-priority-first

RR Round robin

27

number of available processors in this case is a variable
parameter which is optimally selected by the scheduling
algorithm. This approach pre-supposes a flexible architecture
for its realization since it needs a variable number of
processors and sacrifices hardware utilization to get a higher
throughput.

The scheduling algorithm that is developed is primarily

based on the aforementioned second approach.

3.7 Assumptions in developing the Scheduling Algorithm
The scheduling algorithm developed is based on the
following assumptions:

1) Scheduling is non pre-emptive and all task
allocation is static.

2) Execution time of each task is known apriori.

3) Interprocessor and intraprocessor communication
times are negligible.

4) Task weights are assigned arbitrarily but
uniformity is maintained between comparable tasks. Tasks
requiring longer CPU time (like multiplication) have been
assigned larger weights compared to tasks requiring lower CPU
time (like register move, addition etc.). Such arbitrariness is
primarily due to lack of well defined execution-time standards
on account of the widely varying processor types available
currently. Moreover, conceptually the algorithmic implementation

is independent of the weights assigned to the task units.

28

3.8 Scheduling Algorithm

The scheduling algorithm (originally credited to Oschner)
maps the task graph onto a task matrix and seeks to obtain an
optimum schedule by means of elementary operations on the task
matrix. The step by step detail for the algorithm is as follows:

1) A task matrix is defined by five fields T,E,Q,S,W.

2) A task is enabled only when E=1 and Q=0

3) An enabled task can be allocated to a free PE
only.

4) A task unit assigned to a PE has its E field
decremented to zero, that is, E=0 for an assigned task unit.

S) After task completion, the successor or S field of
the task is examined so as to decrement the Q field of each
successor.

6) All successor tasks having Q=0 as a result of
decrement are enabled.

7) Repeated execution whenever a PE becomes idle.

8) Scheduling is complete when all tasks have E=0 and
Q=0.

As a specific example, a simple task graph and associated
task matrix is considered (see Table 4). Initially any one of
tasks 1, 2 and 3 may be allocated depending on the number of
processors available. Assuming that all tasks are assigned,
execution (time_processing in Pascal routine - Appendix D)
begins and the respective "E" fields are reduced to zero (see
Table 5). Task 1 having minimum weight is completed first so

that the PE to which it is assigned is the first to become idle.

TABLE 4

TASK GRAPH AND TASK MATRIX

E Q S w
1 0 4 10
1 0 4 20
1 0 * 30

29

ELEMENTARY OPERATION ON TASK

TABLE §

MATRIX
T E w
1 0 10
2 0 20
3 0 30
4 0 10
TABLE 6
ELEMENTARY OPERATION ON TASK
MATRIX .
T E w
1 0 10
2 0 20
3 0 30
4 0 10

30

31

When this stage is reached, the scheduling process takes over.
The successor field of task 1 is examined which points to task
4. The scheduler now decrements the Q fiéld of task 4 thereby
making it equal to 1 (see table 6).

Even though task 1 is complete, task 4 cannot be assigned
until task 2 ends. So task execution starts again with PE to
which task 1 was assigned remaining idle. When task 2 is
completed, the scheduler looks at the corresponding S field
which again points to task 4. The Q field of task 4 is
decremented to zero as a result. The scheduler now sets the E
field of task 4 thereby enabling it (see Table 7). Task 4 is
assigned to an available PE and its E field is reduced to zero.
When all tasks have been assigned and execution is complete, the
E and Q fields of all tasks equal zero and the resulting task
matrix is shown in Table 8.

From this example, it becomes clear that by elementary
operations (like look up, decrement etc.) it is possible to
keep a dynamic track of a variable number of tasks and PEs. The
resulting information is adequate to set up a timing diagram or
"Gantt Chart" schedule for each PE which is of considerable help
in calculating the overall time necessary to execute the task
graph. By the varying the number of processors used,
considerable insight on overall performance is obtained. These

factors are discussed subsequently.

ELEMENTARY OPERATION ON TASK

TABLE 7

MATRIX
T E Q w
1 0 0 10
2 0 0 20
3 0 0 30
4 1 0 10
TABLE 8
ELEMENTARY OPERATION ON TASK
MATRIX
T E Q w
1 0 0 10
2 0 0 20
3 0 0 30
4 0 0 10

32

CHAPTER 4

SIMULATION AND PERFORMANCE EVALUATION

The evaluation of a computer system generally involves the
following classes of considerations:
1) Performance
2) Cost
3) User convenience
4) Reliability
An attempt is made here to provide a critical appraisal of
overall performance impro&ement when the system under
consideration is subjected to the previously described parallel

model of implementation.

4.1 Performance Evaluation Criterion
The primary requirements for performance evaluation are:
1) Analysis
2) Simulation
3) Measurements
Analysis and simulation is accomplished by partitioning the
system differential equations into task units which are then
allocated to a variable set of processors. The merit of the
scheme is judged on the basis of the following perfofmance

indices:

33

34

1) Execution time
2) Percentage speed-up
3) Percentage efficiency
Execution time may be defined as the time required by a
given set of processors to execute the task graph in question.
For a real-time control problem, the execution time is of great
significance and must be less than the periodic update time.
The increase in speed of computation with a larger number
of processors compared to that of an uniprocessor is generally
denoted by the percentage speed-up factor. If "t" is the time
required to execute a task graph using a set of '"p'" processors

and "m" equals the time to do the same using a single processor,

then speed-up factor [9] is given by:
speed-up = (m / t)

The percentage efficiency shows the overall resource

utilization for a parallel implementation. Mathemétically,
% efficiency = (m / tp) * 100

Percentage efficiency is a measure of the idle time of the PEs.
It has a value of 1007 for an uniprocessor system as can be

verified from the mathematical expression.

4.2 Assumptions in Simulation
To facilitate and simplify analysis, the following model
for a parallel implementation is adopted:

1) an unlimited number of processors is available.

35

2) each PE is capable of evaluating any of the four
fundamental arithmetic operations (+, -, *, /).

3) data and memory alignment times are neglected.

Although assumptions 1) and 3) appear unrealistic,

decreasing hardware costs are giving rise to large
multiprocessor systems which have almost an unlimited number of
processors , eg., The Hypercube, The Butterfly Computer which
has 256 PEs with scope for further expansion. Similarly, data
ﬁnd memory time penalties simply offset the computation results
by a fixed factor and therefore do not form a barrier to the

conceptual implementation of a parallel model.

4.3 Results of Simulation

The task flow pattern for the linear system is simulated
using a variable number of PEs and at each stage the
aforementioned performance indices are recorded. A graphical
representation of these indicate interesting highlights .

The execution time curve (see Figure 4.1) droops sharply
as the number of processors increase showing that with increase
in the number of PEs the task completion time rapidly decreases.
The curve has a characteristic hump in the vicinity of ten PEs.
Any further attempt to boost computing power by increasing the
number of PEs has negligible effect thereby indicating that time
corresponding to critical path has been reached.

The percentage efficiency curve (see figure 4.2) initially
remains at a high value which implies that available tasks are

adequate to keep the set of processors occupied throughout the

PROCESSOR PERFORMANCE

215

1657

1157

TIME (TIME UNITS)

65 7

151

AL DL L B ELE DALY BN EELE LA BN AN B S ML

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
NO OF PROCESSORS

Figure 4.1 Processor Execution Time

36

PERCENTAGE EFFICIENCY

PROCESSOR PERFORMANCE

100

807

80"

707

607

S0

407

307

20"

T T T T T " T T T 1 T 1T 1711
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NO OF PROCESSORS

Figure 4.2 Processor Efficiency

37

update inteéval. However, for more than five PEs it rapidly
decreases owing to the idle time generated. This trend continues
till for ten PEs the curve has a local maxima corresponding to a
percentage efficiency of approximately 857. Beyond this, the
efficiency curve again toggles down. The logical inference drawn
is that for a set of ten PEs a compromise is affected between
idle time and speed of execution whereby resource efficiency is
sacrificed to obtain a greater speed advantage. This is also
corroborated by the speed up curve (see Figure 4.3) which
indicates that beyond ten PEs the speed up ratio remains
unaltered. The performance indices therefore point to ten PEs as
an optimum selection for the task graph under consideration. The
task allocation scheme for the optimum number of PEs is
generated as output by the scheduling program. A Gantt Chart or
a processor timing diagram can be set up from the results. It
may be noted that a close processor packing of tasks exist and
overall idle time is negligible. The task graph, task matrix,

program output and Gantt chart are listed in Appendix B.

38

39

PROCESSOR PERFORMANCE

SPEED — UP

L DAL DL IR HRL A B B NLEN RS B B RS B A LA |

1 2 3 4 6 6 7 8 9 10 11 12 13 14 15
NO OF PROCESSORS

Figure 4.3 Proéessor Speed-Up

CHAPTER 5

ARCHITECTURE AND HARDWARE DESIGN

Conventional computers solve problems one step at a time.
Advanced parallel computers are able to execute independent
parts of the problem concurrently thereby reducing overall
execution time [13]. The success of ; parallel implementation
depends entirely on the hardware support and to this end an

efficient architecture is proposed.

5.1 Architectural Requirements

Computer architecture encompasses a very wide area of
knowledge bounded by ever changing innovations. It is extremely
difficult to define all attributes necessary to justify a
particular architecture. In this thesis research, a
multiprocessor parallel algorithmic implementation has been
proposed which in turn needs a truly parallel hardware back up.

Flexibility is one of most desirable features for such an
architecture. A task graph corresponds uniquely to an
application . Any changes in application demands a new task
graph which in turn requires an altered hardware support.
Hence, a truly parallel machine must have hardware upgradability
and reconfigurability. Popular parallel machines like the

Butterfly Computer, Hypercube, REMPS [14, 15] etc. incorporate

40

41

this philosophy. Current researches on the FAST at the
University of Alabama also re-emphasizes this point.

The PE system architecture must have a high degree of
pipelining to reduce intermediate idle time. It is also
imperative for each PE to have an on-chip in addition to global
memory. This reduces the conventional "Von Neumann'" bottleneck

and increases computing power.

5.2 PE System Design

A large number of PEs with excellent functional features
are currently available [16, 17]. However, a futuristic PE
design is proposed here (see Figure 5.1). A gallium arsenide
RISC engine is coupled with a floating point coprocessor unit
and constitutes the core of the processing element [18, 19].
These are connected by instruction and data buses to respective
caches which virtually eliminates all global memory accesses
except perhaps at the pre-processing stage [20]. Separate
instruction and data caches reduce cache-contention and internal
bus traffic. The PE interfaces with the system bus usinz = bus

controller.

5.3 Technology Selection
An ambitious proposition using WSI GaAs is recommended.
Although a great majority of the integrated circuits are
fabricated with silicon, GaAs technology offers several
advantages [20]:
1) GaAs chips are five to ten times faster than

fastest silicon chips.

42

- em e = e e -

|

| Instruction GaAs Data Bus
lBus RISC FPU

!

I

' \J’Instruction Data CAMMU
t CAMMU

| cc | cc

| MMU BC L;MMU

| c C

1

/}

b e e e m e m e D L Ll M - - -
]

FPU = Floating Point Unit

CC = Cache Controller

MMU = Memory Management Unit

BC = Bus Controller

CAMMU = Cache and Memory Management Unit

Figure 5.1

PE Design Schemata

2) It is radiation "hard" and operates over a wide
temperature range (-2000C to +2000¢C).

3) It is also better suited for efficient
integration with electronic and optical components.

Although high cost and low levels of integration are major
drawbacks, these are expected to be eliminated as the technology
matures.

Wafer-scale-integration denotes the level of integration
attained when an entire wafer is used is used to fabricate a
circuit. Currently WSI is the highest level of integration for
monolithic circuits [21]. The technology is still plagued by
problems of heat dissipation and low ﬁroduction yield. However,
higher attainable density levels and fewer off chip connections
are major factors in proposing this futuristic technology that

has already started making inroads in the chip market [22].

5.4 Interconnection and System Layout

A hierarchical fiber optic star (see Figure 5.2) is
proposed as a suitable. system layout and corresponds to the FAST
architecture [23]. Such a structure is easily expandable and
provides an inexhaustible source of computing power. Each
tentacle of the star ends in individual processing modules which
may be specialized to perform functions like error checking,
I/0, communication, numeric processing etc. Such a system has
the option of having heterogeneous modules or homogeneous
modules depending upon the application. Each fiber optic star

cluster may be configured to form specialized hardware modules

43

3noke] 8an3093TY2aY wayskg Z'G @anbtga
I33IsnId 0/1
Q . Q 0
snq
o13do-a9qr3
O O O O —O
O O
sa1npou Q
Tenpratpur

aTnpou

UOT3Ied TUNUMIOD

K1anooaa

9

pue buryoayd a01ad

for efficient task execution. Optical fiber communication links
are optimally compatible with GaAs WSI technology and is

sufficient to meet the highest transfer rates [24].

S.S'Future Directions

Although a futuristic hardware support is proposed,
architectural innovations may still be implemented to attain
higher modularity and efficiency. Considerable work needs to be
done in the development of parallel software bases which still
happens to be inherently sequential [25]. The setting up of a
task graph for different applications is wasteful of manhours.
Automated software packages need to be developed for performing
domain and functional decomposition. The future will undoubtedly
be affected by improvements in semiconductor technology.
However, any drastic performance improvement would need a
technological breakthrough, like the development of high
temperature superconductors etc., but the basic tenets of
parallel processing are going to hold good for some time to

come.

45

[1]

[2]

(3]

(4]

[5]

(6]

(7}

(8]

(9]

[10]

[11]

[12]

REFERENCES

G. C. Fox and P. C. Messina, "Advanced Computer
Architectures'", Scientific American, vol 257, pp. 67-73,
October 1987.

D. Peng and K. G. Shin, "Modelling of Concurrent Task
Execution in a Distributed System for Real-Time Control",
IEEE Transactions on Computers, vol. c¢36, no.4, pp. 500-
516, April 1987.

Optimal Control Theory - An Introduction ; by Donald E.
Kirk; Prentice-Hall; 1970.

L. G. Birta and 0. Abou Rabia, " Parallel Block Predictor-
Corrector Methods for ODES", IEEE Transactions on
Computers, vol. c36, no.4, pp. 299-311, March 1987.

W. L. Miranker and W. Liniger, "Parallel Methods for
the Numerical Integration of Ordinary Differential
Equations", Math. Comput., vol. 21, pp. 303-320, Nov. 1967

D. J. Arpasi and E. J. Milner, "Mathematical Model
Partitioning and Packing for Parallel Computer
Calculation", pp. 67-74, NASA TM-87170

H. Kasahara and S. Narita, "Practical Multiprocessor
Scheduling Algorithms for Efficient Parallel
Processing', IEEE Transactions on Computers, vol. ¢33,
no.ll, pp. 1023-1029, Nov. 1984

R. R, Muntz and E. G. Coffman, Jr., "Optimal Premptive
Scheduling on Two - Processor Systems', IEEE
Transactions on Computers, vol. cl8, no.ll, pp. 1014

-1020, Nov. 1969.

C. V. Ramamoorthy, K. M. Chandy, and M. J.
Gonzalez, "Optimal Scheduling Strategies in a
Multiprocessor System'", IEEE Transactions on
Computers, vol. c2l, no.2, pp. 137-146, Feb. 1972.

Introduction to the Design and Analysis of Algorithms;
by S. E. Goodman and S. T. Hedetniemi; McGraw Hill Book
Company; 1977.

Computer System Performance; by H. Hellerman and
T. F. Conroy; McGraw Hill Book Company; 1975.

A. H. Sameh, " Numerical Parallel Algorithms - A
Survey", High Speed Computer and Organization, pp. 207-228,
1977.

46

(13}

[14]

15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

R. Cytron, " Useful Parallelism in Multiprocessing
Environment", Proceedings of the 1985 International
Conference on Parallel Processing, pp. 450-457.

K. Hwang and Z. Xu, " REMPS: A Reconfigurable
Multiprocessor for Scientific Supercomputing', Proceedings
of the 1985 International Conference on Parallel
Processing, pp. 102-111.

J. C. Peterson, J. 0. Tuazon, D. Lieberman and M. Pniel,
"The Mark III Hypercube-Ensemble Concurrent Computer",
Proceedings of the 1985 International Conference on
Parallel Processing, pp. 71-73.

R. P. Bianchini and J. P. Shen, "Interprocessor Traffic
Scheduling Algorithms for Multiple-Processor Networks",
IEEE Transactions on Computers, vol. ¢36, no.4, pp. 396-
409, April 1987.

T. L. Johnson, "The RISC/CISC Melting Pot", BYTE, pp. 153-
160, April 1987.

J. F. Mcdonald, H. J. Greub, R. H. Steinworth, B. J.
Donlan and A. S. Bergendahl, '"Wafer Scale Interconnections
for GaAs Packaging - Application to RISC Architecture",
IEEE Computer, pp. 21-34, April 1987.

V. Milutinovic, "An Introduction to GaAs microprocessor
architecture for VLSI", IEEE Computer, pp. 30-42, March
1986.

V. Milutinovic, " GaAs Microprocessor Technology", IEEE
Computer', pp. 10-13, October 1986.

J. F. Mcdonald, " The Trials of Wafer-Scale Integration",
IEEE Spectrum, pp. 32-39, October 1934.

R. 0. Carlson, "Future trends in Wafer-Scale Integration",
Proceedings of the IEEE, pp. 1741-1752, December 1986.

L. D. Huthceson, "Optical interconnects replace hardwire',
IEEE Spectrum, pp. 30-35, March 1987.

D. H. Hartman, "An effective lateral fiber-optic
electronic coupling and packaging technique suitable for
VHSIC applications, Journal of Lightwave Technology, pp.
73-81, Jan 1986.

A. H. Karp, "Programming for Parallelism", IEEE Computer,
pp. 43-56, May 1987.

47

APPENDIX A

SOLUTION METHOD FOR OPTIMAL CONTROL PROBLEMS USING
MATRIX RICATTI EQUATIONS

Several techniques are available for the solution of
optimal control problems. A widely used method involves the
setting up of Matrix Ricatti equationms.

The state equations are :
x(t) = A(t)x(t) + B(t)u(t)
and the performance measure to be minimised is
T [tf
J = 0.5[x(tg) - r(te) ' HIx(tg) - r(tg)] + 0.5 j {[x(t) -

r(£)1TQ(e) [x(t) - r(t)] + uT(£)R(t)u(t)} dt

where r(t) is the desired value of the state vector. H and Q are
positive semidefinite matrices, and R is real symmetric and
positive definite. The final time "t¢" is fixed.

The Hamiltonian is given by
h(x(£),u(t),p(t),t) = 0.5 [x() - =(O)ffyce)
a(Olfacey + PTOA®R(E) +pT(EIB()u(t)
The costate equations are
pY(t) = - Q(t)x*(t) - AT(£)p*(£) + Q(t)x(t)
and the algebraic relations to be satisfied are

0 = R(t)u™(t) + BI(t)p*(t)

50
This yields the optimal control law in terms of the costate

equation as

u®(t) = -R"1(£)BT(t)p*(t)

Instead of computing the STM, an easier computational

alternative is to express
pr(t) = K(£)x*(t) + s(t)
Differentiating both sides with respect to '"t", we get
% - * o* .
p (t) = K(t)x"(t) + K(t)x (t) + s(t)

Substituting for ﬁ*(t) and x"(t) and then eliminating p*(t),
the following equations, commonly referred to as the Matrix

Ricatti equations, are obtained
K(t)= -K(t)A(t) - AT(e)R(t) - Q(t) + K(t)B(t)R™1(£)BT(t)K(t)
and

s(t) = -[AT(t) - R(£)B()R"1(t)BT(t)Is(t) + Q(t)r(t)

"K" is a symmetric matrix of order "n" by "n" and "s" is a
"a" by 1 vector. Hence a set of "[n{n+1}/2]+n" first-order
differential equations need to solved. The boundary conditions

are

p*(tg) = Bx*(tg) - Hr(tg)

= K(tg)x" (tg) + s(tg)

51

As all x*(tf) and r(tg) satisfy these equations, the boundary

conditions are

K(tf) = H
and

s(tg) = -Br(tg)

The optimal control law may be computed from the values of

"K" and "s" by means of standard integration techniques.

APPENDIX B

TASK GRAPH ATTRIBUTES FOR HIGHLY-COUPLED
LINEAR SYSTEM EQUATIONS

53

HdV¥dD ASVYL

WALSAS TIVIIAO

@

Node No. Parameter Operation
1 (ky1)%, Load
2 (kll)pn-l Load
3 (sl)cn Load
4 (klz)cn Load
5 (sPP__; Load
6 (klz)pn-l Load
7 (sz)cn Load
8 (kzz)cn Load
9 (sz)pn_1 Load
10 (ky)® 5 Load
o £ k) e
12 £k Pn) "
13 £(s)° "
14 £(k), n
15 £(s)P__, "
16 £k P01 "
17 £(s,)° "
18 £(ky,) "
19 £(s)P "
20 £y g "

Node Description for System Task Graph

54 -

Node no.

Parameter

Operation

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

* + o+ 4+ x + * + +

*

Node Description for System Task Graph

55

DATA BABE FOR TASHK

43

D o O

[y

-

Qe

0
Q
O
0
O

O
0
Q
O
(8]

o)

O

0

MATRIX

56 -

57

SOQOOO OO OO CIFI A FI Y M G0 vt Ot Tt O ort O et vt O vt O = 0 o (o~ 0 104 OO 4 o

11
14

e
t a

41
O
O

12
16
)

O

13
17
T4
4z
Q)

11

13
14
18
Z6

43
~

15
19

Q

Q

0
12
16
20
0

Q0

0

17
=8
44
(]

58

Q

14
17
18
40

Q

19
O
Q
Q
0
0

0
0
0
0

O

—c
a d

O
w]
0
s]

~
Pragw
o
-

O

O

O
Q0
O
=c
Z0
O
0

(&)

60

Q

=1

Q)

IR

Q

61

9
0

Q
O

Q
Q

40
O

O
0

)

9

41
O
Q
Q

fad

= T

-~
-

-
e e]
~'

-~
'

o~
'~

-

r3

oo

Q
(8]

Q

62

id

63 -

64

65"

NP MM NG

TASE

THE MNUMBER OF

THE NUMEER

processor
processor
processor
processar
processor
processor
processor
processor
processor
prrocessor
processor
processor
processor
processor
processaor
processar
processcr
processor
processor
processor
processor
processor
processor
processar
processor
processor
processor
praocessor
processor
processar
processor
processor
prrocessor
pracessor
processor
processar
processsor
processar
processor
processor
processor
processor
processor

66

ALLOCATION

FROCESSORS USED=10

OF DEFINED TASkKS=45
[1]1 assigned task [13]
L2] assigned task [2]
21 assigned task [Z]
L4]1 assigned task [4]
[Z2]1 assigned task [3]
[&41 assigned task [&]
7] assigned task (7]
{81 assigned task [8]
(P31 assignsd task [9]
£101 assigned task [10]
£11 assigned task [113
£Z2] assigned task [12]
tZ] assigned task (131
[4] assigned task [14]
{51 assigned task [153]
[&] assigned task [16]
7] assigned taszk (171
L8] assigned task [18]
L?]1 assigned task [17]
L1901 assigned task [20]
{71 assigned task [27]
{71 assigned task [I8]
(71 assigned task [I71]
11 assigned task [211
[2] assigned task [22]
[?] assigned task [Z8]
il assigned task [ZS]
(4] assigned task [246]
[6] assigned task (213
[7] assigned task ([(44]
number [9]1 idle for 1 TUS
{21 assigned tasik (291
[8] assigned task [Z0]
(?] assigned task [32

number [10]1 idle for 1 TUS
{11 assigned task L[3I5]
number [7] idle for 1 TUS

number L[1] idle for Z TUS

{21 assigned task [ZT]
LZ] assigned task [24]
{41 as=i1gned task [I6]
L5]1 assigned task [39]
{651 assigned task [413 SRIGIMAD PACGT IS

CF

POOR QUALITY

processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processcr
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor
processor

~

number (71 1dle +or 2 TUS
number (9] idle for 1 TUS
number [10] idle for X TUS
[7] assigned task [40]
number [8] idle for 1 TUS
number [?] idle for 2 TUS
number L10] idle for 4 TUS
[1] assigned task [33]

{Z] assigned task [43]
number {41 idle for 1 TUWS
number [&] idle for 1 TUS
number (8] idle for 2 TUS
number [?1 idle for = TUS
number [10] idle for S TUS
LZ] assiagmed task (341

{4] assigned task (451

numpber [S1 idle for 1 TS
number (&3 idle for 2 TUS
number [7] idle for 1 TUS
number [81 idle for I TUS
number [?] idle for 4 TUS

number [10]1 idle for & TUS
number [21 idle for 1 TUS

number [S]1 idle for 2 TUS
number [&6] idle for 3 TUS
number (7] idle for 2 TUS
number (81 idle for 4 TUS
number [?] idle for & TUS

number (101 idle for 7 TUS
£11 assigned task [421

Schedule Complete

PE 1

68

1 11 21 | 25 | . 35 33 42
01 14 16 18 21 24 26
PE 2
2 12 22 29 | 23 |43
01 PE 3 14 17 19 21 23
3 13 24 34
01 PE 4 19 22 24
4 14 26 36 45
01 16 19 21 22 24
PE S o
1s 1s 39
01 19 22
PE 6
6 16 31 41
01 PE 7 16 192 21
7 17 27 37 44 40
01 11 13 16 18 20 22
PE 8 ..
8 18 30
01 17 20
PE 9
9 19 28 38 32
01 PE 10 11 14 16 17 19
10 20
01 17

Gantt Chart of Optimal Schedule

APPENDIX C

FLOWCHART FOR SCHEDULING ALGORITHM

j=j+1

(start ’

n, tn
task

matrix

Initialization

)
C

p(j).active
= false

|

pfi)-time p(j).task
= w(i) | ET (1)
p(j).active e(i)= 0
= true

(CONTINUED)

70

kk=1i

e(kk)=1

kk=kk+1

71

p(j) .task
=t (kk)

j=is1

e(kk) =0

p(j).time
=w(kk)

p(j).active
=true

kk=kk+1

Flow Chart for Procedure 'Schedule’

ji=1

T n
Cd e(jjl)ga(jii)
=0

jj=ij*l

Schedule
Complete

(stop ’

Flow Chart for Procedure 'Check Schedule'

72

k=1

1

p(k).time

p(k).time— -1
k=k+1

(CONTINUED)

73

74

p(1l) .active

= false
tmpl=p(1l).task
tmp=succ(tmpl)

q(tmp)=
q(tmp) -1

C::: q(tmp) y |e(tmp)=l -__.<::)

1=1+1

:E::>

Flowchart for Procedure 'Time_Processing'

11=1

p(1l).time>

<

delay=
-p(11) .time

Procedure
Schedule Y

Flowchart for Procedure Reallocate

]

11=11+1

75

APPENDIX D

SCHEDULER ROUTINE IN PASCAL

CEIKKAKREKKKERKKEKRKEKKKKK KKK KKK KEKKKKE KK KKK RKK KK KKK KKK KK
The following Fascal routine allocates tasks to a set of
processors inaccordance with the scheduling algorithm
already outlined in Chapter 3. The number of processing
elements is treated as a variable parameter.The program
requires as input the following:

1) The number of available PEs denoted by "n"

2) The number of defined tasks denoted by "tn"

2) The task matrix which is read from an input

data file

The program outputs the delay time of each processor and
also the task numbers which are assigned to a particular
processor. It keeps track of the time schedule of each
processaor by providing relevant information.

EEEKEKKKKKKKKKKKKKKKKKKKKKKKKAKKKKKKKKKKKKKKRKKK KKK KKK KKK KD

program processor_schedulings

const

mas _succ=7; i
max_succ is the maximum number of successors that can

be present at each node of the task graph. It can be
predefined to assume any value.In this case it has been
defined to be equal to seven as this is adequate for the
task graph under consideration. 3

tvpe

processor=record

time:integer; { Each processor is defined as a record
task::integer; { the boolean field denotes whether a
active:boolean: { processor is active / inactive
end;
proc= arrayll..20] of processor:{ maximum number of FEs
arraytype= arrayl(l..50] of integer;:
successorarray=arrayl1..50,1..50] of integer:

var
iistn,n.inp,z.is:tinteger;
e,g.w,tzarravtype;
SuUC:suUcCcessorarrays
prprocs
filvari,filvarl:tent:
fl1l,f2:stringlC121;

(SR)

77

procedure INITIALISE;:

TERKKEKEKEKKKKKKRKRK KKK KK KKK KKK KKK KEKKKKK KKK KKK KKK X
This procedure intialises all the FEs by making the
active field false and setting task time and number = 0.
It provides the scheduler with a set of FEs that are
ready to be assigned to incumbent tasks.
KEXKKKKKERKKKKKKK KKK KKK KKK K KKK KEKAKKK KKK KKK KR KK KK S

N
var
kisinteger;:

begin
for ki:=1 to n do
begin
pLlkid.times=D;
plkil.task:=0;
plkil.active:=false;
ends
end;

procedure SCHEDULE:

TEXKEKKKEKEKKRKKKK KK KKK KKKKKRK KKK KKK KKKKKKRKK KKK AKKE K KL KK
This procedure allocates a set of available tasks to a

set of processors that are inactive or availables. After
initial assignment, it checks whether all tasks have been
scheduled by invoking the procedure check _schedule.
AXKEKKEKKEX KKK KKK KKK KKK KKK R KKK KRR KEAKRKKKRKK KK KKK KKKK KKK)

label
start.mark;

var
i,d.kkrintegers;

procedure TIME_FROCESSING;

TERKKKEKKKKKKRKKKKREKKRK KKK KKK KKK KK KKKKKK KK KKK KKK KKK KK
This procedure decrements the time field of each
processor and after each decrement makes a self check
to ascertain whether any processor is idle. I+ all
processors are active then it continues decrementing.
If any processor is idle, it invokes the procedure
reallocate for reallocation of any available task to
the idle processor / processors.
KEKKKRKKKKKKKKKKKKKKKE K KKK EKKRKKKERKK KKK KK KKK KK T

1 abel
sl,s2:

var
k.l,templ,temp,ikk,no_succ.max_it:integer;

procedure REALLOCATE;

TEEKEKKK KKK KKK KKK KKK KKK KRKERR KKK KKK KKK KKK K KEKKKKK
This procedure handles situations when some processors
become free due to task completion while some are still
active. The idle processors are assignad to incumbent
tasks. If no tasks are available, then idle time

is recorded for the inactive processors. After possible
reallocation, the main scheduling program is again invoked.
L322 F2 200023038820 083 2388332033338 3323335333333 3333¢53% W

label
13

var
ll,delay:integer;

79

CERICTHAL PAGE 13

begin { of REALLOCATE 3

1l:=1;
f1:if pLlll.time <= O then
begin
if pLlli.time < O then
begin .

delay:= - (pl[lll.time) ;.
writeln(filvar2,’ processor number [",11,71 idle for
end;
l1l:=11+1;
if 11 > n then
SCHEDUILLE
else goto f1 ;
end
else
begin
11:=11+1;
if 11 » n then
begin
SCHEDULE ;
end
else
goto f1;
end:

end: { of REALLOCATE

-+

()

begin { of TIME_FROCESSING
ke=1;
sl: pLkl.time:=plkl.time—-1:
ki=k+1j
if k * n then
begin
la=1;
s2:if plLll.time = O then
begin
plll.active:=fal se:
templ:=pl{ll.task;
no_succ:= sucltempl,11;

wr FOOR QUALITY

Th.delay,

80

TUS?) 3

81

ORIGNAT

b + PAGE 1,
OL I'ocr QUAL!T?

max _it:=no_succ+ls
for ikk:=2 to max_it do
begin

temp:=sucltempl, ikk1;

if temp <> O then

begin
qltempli=gltempl-1;
if gltempl=0 then eltempl:=1;

end:
end;
l:=1+1;
if 1 » n then
REALLOCATE
el se
goto s2;
end
else
begin

le=1+13
if 1 > n then
begin
REALLOCATE ;
end
else
goto =23
end;
end
else
begin
goto sl
end;
end;

procedure CHECK _SCHEDULE;

THRREKKOKK KK KRKKKE KKK KKK E KKK KKK KKK KKK KK KR KKK KK KKK
This procedure examines the task matrix to ensure that
scheduling is complete, that is, the task graph has been
completely executed. If not., it invokes procedure
time_processing to begin task execution ance again.

I+ allocation is complete, it indicates this by displaying

"Schedule Complete."
KXKEKKKKKKKKEKNKKKE KK KKK KKK KKKKK KKK KKK KKK KK KKK KKK KKK KT

label
11;

var
Jjij: integer:

begin
Jis=13
11:2if(eLijil=0 and (qLijil=0) then
begin
Jis=3di+1;
if JdJ » tn then
begin
writeln (filvarZ,’Schedule Complete®);
end
else
begin
goto 11;
end;
end
else
begin
TIME_FROCESSING:
end;
end;

82

of SCHEDULE 2

is=13g
di=1;
start: i+ i » n then
begin
CHECE, _SCHEDULE;
end
else
begin
if plil.active = false then
begin
if elil=1 then
begin

pLil.times=wli]:
plLil.active:=true;
plil.tasks=t011];
elils=0;
writeln(filvarl,’ processor [%,J.
1:=i+13
Je=i+1;
goto start;
end
else
begin
bka=i H
mark: i+ elkkl=1 then
begin
plLil.time:=wlkikl;

TUTUTIAT PAGH I
;. POCK GUALITY

"1 assigned task [7

plil.active:=true;

plil.tasks=tLkkI;
elkikl:=0;
processor [*,4.°
de=i+1:
goto start:
2nd
else
begin
if qlkkld
begin
kice=bk+1y

writeln{(filvarz,’

=0 then

1l amsigned task [°

83

21272703

ends;
end
2lse
begin
de=1+1;
goto start:
ends;
ends
ends

1f kk > tn then
begin
CHECEK _SCHEDULE;
end
else
begin
goto mari:
ends;
end
else
begin
brbee =lshi+1 3
if ki » tn then
begin
CHECK _SCHEDULE;
end
else
begin
gqoto marks;
end;
end:
end; '

S v e T TN A Y (5]
fox o s A’:.:‘.J'E I'-’

O POCR QUALITY

84

ORIGINAL PAGE I3

Aol WL 3

OE POCR QUALITY,

begin {of MAINI

writeln(input number of processors’);:
readln(n)d;
writeln(® SELECT INFUT DATA FILE °:
writeln(® OFTIONS-T1.DAT/TZ.DAT ")
readlin(f1);
assign(filvarl,f1);
reset(filvarl);
writeln(® SELECT OQUTFUT DATA FILE %)
writeln(® OFTIONS— R1.DAT/RZ.DAT)i
readlin(+2);
assigni{filvar2,f2);
rewritei(filvara);
writelni{filvarl,” TASK ALLOCATION 7))
writeln(filvarl, *THE NUMRER 0OF FROCESSOFRS USED=
readlni{filvarl,tn);
writelni{filvar?, *"THE NUMBER OF DEFINED TASHKS=",
for ii:=1 to tn do
begin
tliildi=iig
end;
for ii:=1 to tn do
bagin
readln{(filvarli,.eliil):
end;
for ii:=1 to tn do
begin
readln(filvarl,qgliil)
end;
for ii:=1 to tn do
begin
for is:=1 to max _succ do
beqgin
readln{filvarl,.suclii.isl);
end;
end;
for ii:=1 to tn do
begin
readlnifilvari,wliil):
end;
INITIALISE
SCHEDULE;
close(filvara»;

am

as

end.

Tam)g

tnig

85 -

